Problem 574
Verifying Primes
Let $q$ be a prime and $A \ge B >0$ be two integers with the following properties:
- $A$ and $B$ have no prime factor in common, that is $\text{gcd}(A,B)=1$.
- The product $AB$ is divisible by every prime less than q.
It can be shown that, given these conditions, any sum $A+B<q^2$ and any difference $1<A-B<q^2$ has to be a prime number. Thus you can verify that a number $p$ is prime by showing that either $p=A+B<q^2$ or $p=A-B<q^2$ for some $A,B,q$ fulfilling the conditions listed above.
Let $V(p)$ be the smallest possible value of $A$ in any sum $p=A+B$ and any difference $p=A-B$, that verifies $p$ being prime. Examples:
$V(2)=1$, since $2=1+1< 2^2$.
$V(37)=22$, since $37=22+15=2 \cdot 11+3 \cdot 5< 7^2$ is the associated sum with the smallest possible $A$.
$V(151)=165$ since $151=165-14=3 \cdot 5 \cdot 11 - 2 \cdot 7<13^2$ is the associated difference with the smallest possible $A$.
Let $S(n)$ be the sum of $V(p)$ for all primes $p<n$. For example, $S(10)=10$ and $S(200)=7177$.
Find $S(3800)$.
检验素数
取素数$q$及整数$A \ge B >0$满足以下性质:
- $A$和$B$没有相同的质因数,也就是说$\text{gcd}(A,B)=1$。
- 乘积$AB$能被所有小于$q$的素数整除。
可以证明,在上述条件下,满足$A+B<q^2$的两数之和,以及满足$1<A-B<q^2$的两数之差,一定是素数。因此你可以寻找满足上述条件的的$A,B,q$,使得$p$能写成$p=A+B<q^2$或$p=A-B<q^2$的形式,以此来验证$p$是素数。
对于任意素数$p$,记$V(P)$为使得$p$能表达为两数之和$p=A+B$或两数之差$p=A-B$的最小整数$A$。例如:
$V(2)=1$,因为$2=1+1< 2^2$。
$V(37)=22$,因为$37=22+15=2 \cdot 11+3 \cdot 5< 7^2$能表达为两数之和且$A$最小。
$V(151)=165$,因为$151=165-14=3 \cdot 5 \cdot 11 - 2 \cdot 7<13^2$能表达为两数之差且$A$最小。
记$S(n)$为所有素数$p<n$对应的$V(p)$之和。例如,$S(10)=10$,$S(200)=7177$。
求$S(3800)$。